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We study a Lotka—Volterra reaction—-diffusion-advection model for two competing

species in a heterogeneous environment. The species are assumed to be identical

except for their dispersal strategies: one disperses by random diffusion only, the other

by both random diffusion and advection along an environmental gradient. When the

two competitors have the same diffusion rates and the strength of the advection is

relatively weak in comparison to that of the random dispersal, we show that the

competitor that moves towards more favourable environments has the competitive |
advantage, provided that the underlying spatial domain is convex, and the |
competitive advantage can be reversed for certain non-convex habitats. When the
advection is strong relative to the dispersal, we show that both species can invade
when they are rare, and the two competitors can coexist stably. The biological

explanation is that, for sufficiently strong advection, the ‘smarter’ competitor will

move towards more favourable environments and is concentrated at the place with

maximum resources. This leaves enough room for the other species to survive, since it

can live upon regions with finer quality resources.

1. Introduction

The semilinear parabolic system

%;—{ = pAu + ulm(z) — u — v] in 2 x (0, 00),

Ov :

5= vAv +vm(z) — u - v] in £2 x (0, 00), (1.1)
ou v

%—%-—O on 812 x (0, 00)

models two competing species that are identical except for their migration rates.
Here, the migration rates y and v are two positive constants, and u(z,t) and
v(z, t) represent the densities of two species at location z and time t. The function
m(z) represents the intrinsic growth rates of species, and throughout this paper
we assume that m(z) is twice continuously differentiable in 2. The habitat {2 is
a bounded region in RY, with smooth boundary 82, n denotes the unit normal
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vector on 942, and the no-flux boundary condition means that no individuals cross
the boundary.

If we assume that the initial data u(z,0) and v(z,0) are non-negative and not
identically zero, then, by the maximum principle {21}, u(z,t) > 0 and v(z,t) > 0
for every z € {2 and every t > 0. Moreover, u(z,t) and v(z, t) are classical solutions
of (1.1) and exist for all time ¢ > 0. Of particular interest are the dynamics and
coexistence states of (1.1). We say that a steady state (ue, ve) of (1.1) is a coezistence
state if both components are positive, and it is a semi-trivial state if one component
is positive and the other is zero.

We first make the following assumption on m(x).

AssuMPTION 1.1. m(z) is a non-constant function, and

/m>0.
7}

Under assumption 1.1, for every v > 0, the scalar equation

YAG + (m — )8 =0 in £2,

1.2
% =0 on 912 (12)
on

has a unique positive solution, denoted by #(z,~). This implies that (1.1) has two
semi-trivial states, denoted by (6(-, 1), 0) and (0, 6(-,v)) for every u > 0 and every
v > 0. It is shown in [9] that if 4 < v, then (6(-, 1),0) is globally asymptotically
stable among all non-negative non-trivial initial data. In other words, the slower
diffuser wins. By symmetry, a similar conclusion holds when g > v. In particular,
(1.1) has no coexistence states if y  v. For the case when p = v, (1.1) has a family
of coexistence states, which is the global attractor for all non-negative non-trivial
initial data.

It seems reasonable to argue that, besides the random dispersal, it is also very
plausible that species could move upward along the resource gradient (see, for exam-
ple, [1-3,6] and references therein). In this paper we study the system

%7:-=V-{uVu—auVm}+(m—u—v)u in £2 x (0, c0), w9
%=V-{uVU]+(m—u——v)v in 2 x (0,00}, .
with no-flux boundary conditions
u—g—g - au%% = % =0 on 912 x (0,c0). (1.4)

Here, the species with density v is assumed to disperse only by random diffusion,
while the species with density u is assumed to disperse by diffusion together with
directed movement towards more favourable habitats (corresponding to a > 0). Our
primary goal is to understand the dynamics of (1.3), (1.4) for large . In particular,
given arbitrary p and v and under very mild assumptions on m(z), we will show
that system (1.3), (1.4) has at least one stable coexistence state for large . This
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is in strong contrast with the case when a = 0, for which there is no coexistence
state if 4 ## v and the slower diffuser is the sole winner.

When assumption 1.1 holds, system (1.3), (1.4) has two semi-trivial states, de-
noted by (&,0) and (0,6(-,v)), for every u > 0, every v > 0, and every a = 0
(see [6]), where 4 is the unique positive solution of

V- [uVi—oidVm]+ (m—4)a=0 in £2,

| o _om (1.5)
' Ko, —olp = 0 on 9{2.

For fixed p, v with u # v, the dynamics of (1.3), (1.4) are similar to those of (1.1)
for sufficiently small . More precisely, there exists some small positive constant
ap = ag(y, v, £2,m) such that if & € (0,ap), then (%,0) is the global attractor
of (1.3), (1.4) among all non-negative and non-trivial initial data if u < v, and
(0, 8(-,v)) is the global attractor if u > v.

The case when p = v is quite delicate. This is due to the fact that (1.1) with
i = v is a degenerate system: it has a family of coexistence states, each of which
is neutrally stable, and as a whole is a global attractor. As shown in recent studies
[4,5,17,19], (1.1) with p = v is very sensitive to perturbations, and the dynamics and
coexistence states of (1.1} after perturbations can be very complex. For sufficiently
small positive ¢, (1.3), (1.4) can also be viewed as a perturbation of (1.1).

For 1 > 0, define

oo Ja0@,8)V8(z, p) - V(z) da
W) = S WP ds

As will be seen later, this quantity plays a crucial role in studying the dynamics
of (1.3), (1.4) for small positive c.
For any uo > 0, p1,v1 € R, and o3 > 0, let

(,LL, v, Oé) = (.u() + p1s + 0(3)1/-1'0 + s+ O(S),als + 0(3))’ (16)
where s is positive and small.

THEOREM 1.2. Suppose that assumption 1.1 holds and that 2 is convex. Then the
following results hold.

(i) For every p > 0, a*(u) > 0.

(it) Let p,v,a be given as in (1.6). If ay > (g1 — v1)/o* (o), then, for posi-
tive small s, (1,0) is globally asymptotically stable. In particular, if (u,v) =
(uo, o), then (4,0) is globally asymptotically stable for small positive a.

Theorem 1.2 is established in [5], except for the global convergence conclusion
in part (ii), i.e. every solution of (1.3), (1.4) satisfies (u,v) — (@,0) as t — oo.
Theorem 1.2 has some interesting consequences; e.g. for the case when p; > vy,
it implies that the competitor that moves towards more favourable environments
may have a competitive advantage even if it diffuses more rapidly than the other
competitor. This is in strong contrast with the case in which both competitors
disperse only by random diffusion, where the slow diffuser always wins. It means
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that the advantage gained from the directed movement up resource gradients can
counterbalance the disadvantage created by faster diffusion.

The convexity of {2 is needed in the proof of theorem 1.2 to ensure that a*(p) > 0
for all g > 0, which allows us to exclude the possibility of coexistence states for
small a > 0. The proof of a*(u) > 0 is given in [5], where the authors applied the
fact that (|V8|2)/6n < 0 on 842, which holds for convex domains only. We should
point out that the convexity assumption on domain {2 in theorem 1.2 seems to be
necessary, as shown by the following result.

THEOREM 1.3. Given any pg > 0, there exist a non-convez domain {2 and a smooth
function m(z) such that the following results hold.

() a*(po) <0, and a*(u) changes sign at least once in (0, uo).

(i) Let p, v, a be given by (1.6). If ay > (p1 — v1)/a*(po), then, for positive
small s, (0,6(-,v)) is globally asymptotically stable. In particular, if (p,v) =
(1o, o), then (0,0(:, uo)) is globally asymptotically stable for small positive .

For the case when u; < v4, theorem 1.3(ii) implies that, for certain non-convex
habitats, a slower diffuser which also moves towards more favourable environments
may not have the competitive advantage. This is in strong contrast to both the
convex habitat case and the case when a = 0.

The main goal of this paper is to study the much more interesting and challenging
case when « is large, and show how strong advection can induce stable coexistence
of competing species. In particular, we shall investigate the stability of (&, 0) and
(0,6(-,v)), and the existence and qualitative properties of coexistence states.

The stability of (i, 0) and properties of coexistence states rely crucially on qual-
itative properties of &. To this end we first make the following assumption.

AssumMPTION 1.4. The set of critical points of m(z) has Lebesgue measure zero.
THEOREM 1.5. Suppose that assumption 1.1 is satisfied.
(1) If assumption 1.4 holds, then ||@||p2(o) — 0 as a — oo,

(i) If m(z) >0 in 2 and o > p/ ming m, then

@(z) > maxm - exp { (%) [’m(w) — max m] } (1.7)

o)
for every z € 2. In particular, maxp 4 > maxg m.

Theorem 1.5 implies that if m(z) > 0 in {2 and assumption 1.4 holds, then, for
sufficiently large «, % is concentrated at the global maxima of function m(z). It
is natural to enquire whether or not 4 can concentrate at other locations. In this
connection, we make the following assumption.

AssuMPTION 1.6. Suppose that 2 = (0,1), that m;(0) > 0 > m,(1) and that
m(z) has finitely many critical points in [0,1], denoted by {z1,...,zx}.

THEOREM 1.7. Suppose that assumption 1.1 holds and that 2 = (0,1).
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(i) If mgy > 0 in [0,1], then, for sufficiently large @, 4y > 0 in [0,1], G(z) — 0
uniformly in [0, ¢] for every c € (0,1), and 4(1) 2 fol m > 0.

(i) If assumption 1.6 holds, then i4{x) — O uniformly in every compact subset of
[0,1] \ {z1,...,Zk} as @ — oo. In particular, 4(z) — 0 pointwise for every
z e [0,1\ {z1,..., %} as & = o0.

We conjecture that & is concentrated only at local maxima of function m(z). This
conjecture is confirmed by part (i) for the special case when m(z) has no critical
points, and is also partly supported by theorem 1.7(ii), which says that the only
possible places where % can concentrate are the critical points of m.

For the stability of (0,8(-,v)), we assume that m(z) has at least one isolated
global maximum as follows.

AssuMPTION 1.8. There exist some zp € 2 and ¢ > 0 such that m(zo) = maxpm
and m(zg) > m(z) for every z € Bs(zo) N2\ {zo}.

For sufficiently large o, we have the following result.
THEOREM 1.9. Suppose that assumption 1.1 is satisfied.

(i) If assumption 1.4 holds, then, for every p > 0, there exists some positive
constant ag = az(p, m, 2) such that if & > ag, (4,0) is unstable for every
v>0.

(i) If assumption 1.8 holds, then, for every p > 0 and n > 0, there exists some
positive constant ag = az(p,n,m, §2) such that if & > ag, (0,0(-,v)) is unsta-
ble for everyv 2 n.

(iii) If assumptions 1.4 and 1.8 hold, then, for every u > 0 and n > 0, there ezists
some positive constant cy = (i, n,m, 12) such thet if v 2 1 and o 2 g,
system (1.3), (1.4) has at least one stable coezistence state.

(iv) If assumption 1.4 holds, every coezistence state (uq, Vo) of (1.8), (1.4) satis-
fies ug — 0 in L2(£2) and vy — 0(-,v) in W22(02); if assumption 1.6 holds,
then uq — 0 pointwise for every z € [0,1]\ {z1,..., 2k}

REMARK 1.10. Since (1.3), (1.4) is a strongly monotone system (see lemma 2.2}, as
in other competition models the existence and stability of coexistence states in (iii)
follow from the instability results on the two semi-trivial states in (i) and (ii) and
theory for continuous monotone systems [7,13,20]. Furthermore, the system (1.3),
(1.4) has at least one asymptotically stable coexistence state [14]. For the discrete-
time counterpart of results for monotone systems, we refer the reader to [8,12] and
references therein.

Parts (i) and (iii) of theorem 1.9 are somewhat surprising. For fixed p < v, the
species u always wins, provided that o > 0 is sufficiently small. As o increases,
since the species u has the tendency to move towards more favourable regions, it
should have a greater competitive advantage and should still be the sole winner of
the competition. However, theorem 1.9(i) implies that species with density v can
invade when rare, and part (iii) illustrates that the two species can coexist stably
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for large «. This is in strong contrast with the cases when a = 0 or @ > 0 is
sufficiently small.

Part (iv) seems to offer a possible explanation for the existence of stable coexis-
tence states for large «. Namely, as o becomes sufficiently large, the species u tends
to concentrate around critical points of m(z), and this leaves sufficient resources
for the other species to survive. We conjecture that, for sufficiently large «, the
system (1.3), (1.4) has a unique coexistence state, denoted by (uq,vs), which is
globally asymptotically stable among non-negative non-trivial initial data. More-
over, as @ — 00, U, concentrates at all local maxima of m(z) in £2.

This paper is organized as follows. In § 2 we consider the case when « is positive
and small, and theorems 1.2 and 1.3 will be established therein. Section 3 is devoted
to the study of qualitative properties of & for arbitrary or large a, and theorems 1.5
and 1.7 will be proved. In §4 we investigate the stability of two semi-trivial states
and establish theorem 1.9.

2. The case when 0 < a K1

In this section we consider the dynamics of (1.3), (1.4) when « is positive and
sufficiently small. Theorem 1.2 will be established in §2.1, and §2.2 is devoted to
the proof of theorem 1.3.

2.1. Convex domains

In this subsection we study (1.3), {1.4) for sufficiently small & when the underlying
domain (2 is convex.

LEMMA 2.1. Suppose that m is non-constant. Let (u,v,a) be given by (1.6). If
a*(po) # 0, ay # (1 — v1)/a*(w) and (1.2) with v = po has a positive solution,
then system (1.83), (1.4) has no coezistence state for positive small s.

Note that in lemma 2.1 we do not assume that (2 is convex. This generality will
be needed in §2.2.

Proof. We argue by contradiction. Suppose that system (1.3), (1.4) has a coexis-
tence state (us,v,) for every sufficiently small positive s. By elliptic regularity [10],
passing to some subsequence if necessary, we may assume that (us,vs) — (u*,v*)
as s — 0, where u* > 0 and v* > 0 in £2, and (u*,v*) satisfies

poAu* +ur(m—u* —v*)=0 in f2,

poAv* +v*(m—u* —v*)=0  in 2, @2.1)
ou*  ov*
s o 0 on f2.

Hence, u* + v* satisfies

woAu* +v*) + (W +v)m—u*—v*)=0  in £,

* * 2-2
ow +v) o a0 (22)
on
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Therefore, either u*+v* = 0 or u*+v* = 0(-, uo). We show that the only possibility

is u* +v* = 0(, uo). If u* +v* =0, L.e. u* = v* = 0, we have (us,vs) — (0,0)

uniformly in = as s — 0. Set 95 = vs/||vs]|Lo()- By elliptic regularity we may

assume that 95 — ¥ in C?({2), where © is non-trivial, non-negative and satisfies
9

poAD+mb =0 inf, = =0 (2.3)

on|sn

Multiplying (2.3) by 0(-, o), integrating in 2 and applying (1.2) with v = ug, we

have

/ 02(z, po)d(z) dz = 0,
2

which is a contradiction since both 8(-, o) and ¥ are positive. Hence, u* + v* =

9(') /'LO)
We consider the following three possibilities.

CASE 1 (u* =0 and v* = 0(-, p)). For this case, we define @y = us/||ts|| Loo(52)-
Then 1, satisfies

V- [pVis — aidsVm] + ds(m —us —v,) =0 in 2

and the no-flux boundary condition. Hence, by elliptic regularity, we may assume
that 4, — 4* in C?(£2), and 4* satisfies maxg 4* =1, 4* > 0, and

on*
on

= 0.
an

AL + ¥ [m — (-, o)l =0 in 02,

Therefore, 4* = (-, uo)/1|9(-, t0) | Loo.
Multiplying the equation of us by v; and the equation of vs by u,, subtracting
and integrating in {2, we have

a/ usVm - Vg = (p — u)/ Vug - Vus. (2.4)
7 Q
Applying (1.6), dividing both sides of (2.4) by s and ||us||pe(s2), we obtain
(o1 + 0(1))/ s Vm - Vug = (i1 — 1 +0(1))/ Vi » Vs, (2.5)
fr) Q

Letting s — 0 in (2.5) we have

o /ﬂ 6, o)V, VO(-, o) = (2 — 1) /Q 960, o), (2.6)

ie. a; = (u1 — v1)/a* (o), which contradicts our assumption.

CasE 2 (v* = 0 and u* = 0). Since the proof of this case is similar to that of case 1,
it is omitted.

Cask 3 (u* > 0 and v* > 0). By u* +v* = (-, uo) and (2.1) we see that (u*,v*) =
(T8(, o), (L —7)8(-, o)) for some 7 € (0,1). Dividing (2.4) by s and passing to the
limit, we see that (2.6) again holds. This contradiction completes the proof. 0
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LEmMMA 2.2. Let (ui(z,t), v;{z,1)), i = 1,2, be two solutions of system (1.3), (1.4),
u1(z,0) = uz(z,0) and v1(z,0) < vo(z,0) for every z € 2. Then ui(z,t) 2 us(z,t)
and v1(z,t) < volz,t) for every x € 2 and t > 0. If we further assume that
u1(z,0) # ua(z,0) and vi(z,0) # va(z,0), then uy(z,t) > ua(z,t) and vi(z,t) <
vo(z,t) for every z € 2 and every t > 0.

Proof. Set w = e(~*/W™y, Then system (1.3), (1.4) becomes

88_1:=,L6Aw+an-Vw+{m—e(“/“)mw“”]w in §2 % (0,00),
% = vAv + [m — el/PM™y — gy in £2 x (0, 00), @0
Z_ZJ:_Z%___O on 812 x (0, 00).

Since wy(z,0) 2 wa(z,0), v1(x, 0) < v2(z, 0), and (2.7) is a monotone system [3,12,
15], we have wi(z,t) = wq(z,t) and v1(x,t) < va(z,t). The rest of the proof follows
similarly from the maximum principle. This completes the proof. O

We are now ready to prove the theorem.

Proof of theorem 1.2. By [5, theorem 3.3, if oy > {p1 — 1)/ (po), (4, 0) is stable
and (0,6(-,v)) is unstable for positive small s. By lemmas 2.1 and 2.2 and theory
for monotone systems [12,15], we see that (%,0) is globally asymptotically stable
for positive small s. 0

2.2. Non-convex domains

In this subsection we consider the dynamics of (1.3), (1.4) for certain non-convex
domains {2 and small positive a.

LEMMA 2.3. Fiz any i > 0. There exist a non-conver domain 2 C R? and a
smooth function m(z) such that (1.2) has a positive solution for 0 < v < fi, and
a* (i) < 0.

For 0 < e « 1, define
2= {(z1,22): 0 < 21 < 1,0 < z3 < galz1)},

where a{z;) is some positive smooth function in [0,1] to be chosen. We assume
m(z) = m(z;), which will also be chosen later.
We first choose some smooth function 6;(2) : 0 < z £ 1 such that it satisfies

(i) 61(2) > 01in [0,1],
(ii) 64,(0) =8;.(1) =0,

(iii) 61,25 (%), is negative somewhere in (0, 1). For constructions of such a func-
tion 6y, see ¥ in [6, lemma 3.2].

Next, we can choose a smooth function a,(z) such that it satisfies

(i) a1(2) > 0in [0,1],
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1
(1) / 01(2)dz = 1, and
o Jo

(i)

1 . (02 1
ﬂ‘/ %ﬁﬁ—(@l—)"idm—z/ 0,62 , dz. (2.8)
0 9] 01 0 '

Set y1 = [ a1(s)ds. Since dy;/dz = a1(2) > 0, we can write z = z(y1). Define

a(y1) = a1(2(1)),  0(w1) = 61(2(v1)), m(y1) = ma(2(v1))s (2.9)
where "0
ma (Z) = 01 - Hé;TEE

Hence, 0, satisfies
ﬂel,zz + 0;12(91 [ml(z) - 01] =0 in (0, 1), gl,z(O) = 91,,3(1) = 0. (210)

By the change of variable z = z(y;), we see that § is the unique positive solution
of the equation

fi— <aﬂ> +af(m—8)=0 in (0,1), (2.1)

é!h (0) = élh (1)=0.

CLAIM 2.4. For such choices of m and a, (1.2) has a unique positive solution for
all v € (0, 2.

If [ o,m20, (1.2) has a unique positive solution for all v > 0, so there is nothing
to prove. If |, 0. m<0, let g > 0 denote the principal eigenvalue of the linearized
equation of (1.2), i.e. the equation

Op

B o, = 0 (2.12)

pelDp+mp =0 in (2,

has a positive solution, where n. is the outward unit normal vector on 8f2. It is
well known that (1.2) has a positive solution if and only if v € (0, tte). By lemma 3.6
and the proof of [6, theorem 3.1}, we see that u, — p* as € — 0, where p* > 0 is
the principal eigenvalue of the equation

d d
b (“55{) tamp=0 in(0,1), vy (0)=gp,(1)=0. (2.13)
Since (2.11) has a positive solution, we see that p* > fi. This implies that, for small
positive €, pe > fi. Hence, (1.2) has a positive solution for all v € (0, ].
Let 6° denote the unique positive solution of (1.2) with v = 2, m = m(=21), and
2 =12, ie.
DA + % [m(z,) —60°] =0  in §2,

e 2.14
o6 =0 on 02,. ( )
one




506 R. S. Cantrell, C. Cosner and Y. Lou

We introduce the transformation

z1 = Y1, Iy = Ea(yl)yz-

£2. becomes 2 = (0,1) x (0, 1) under this new coordinate. Set 8.{y1, y2) = 0°(z1, z2).
Then 8, satisfies

[LV ' (Beas) + a@,.;[m(yl) - 95] =0 in 2, } (2'15)

B.6.-n=0 on 842,
where B is given by

2,2 .2
1+e%ay,, y3
Uy, |»

B.u = <auy1 — Ay, Y2lUyy y — Oy, YolUy, -+ 3

and n is the unit normal vector on 842. Multiplying (2.15) by 6. and integrating in
£2, as in [11] we have

ay : Ggy
/n [a (66,1/1 - “jyzes,yz) + ?z"i'] <C

for some positive constant C which is independent of e. Hence, ||0c|[wi2(0) < C
and |0e.4,/lz2(2) < Ce. Therefore, . — § weakly in Wh2(£2), and 6 > 0 almost
everywhere (a.e.) in (2. Since ]]65 well2() = 0 ase — 0, we have 0y, = 0 a.e., which
implies that 6(y) = 6(y1) a.e.

Multiplying (2.15) by any n = n(y1) € W12(0,1) and using integration by parts,
we have

—f /Q Ty (abe y, — Oy, Yabe y,) dy1 dyz + /Q anbe[m(y:) — e] dy1 dyz = 0.

Letting € — 0, we have
1 R 1 N
=it [ el dvs + [ andlm - 5)ays =0,

which implies that 4 is a smooth solution of (2.11).

We further show that 6 # 0. We argue by contradiction. If not, we have . — 0
weakly in W2(§2) and strongly in L?(£2). Set 8} = 6. /||0c||z2(2). Then |19*”L2(n)
1. By a similar argument to that above, we have 6* — 6* weakly in Wb2(£2) and
strongly in L?({2), where 6* > 0 a.e. in £2 and is a smooth solution of

d , do*
fi— g* =0 in (0,1),
Hays (ady1)+a’m in (0.1) } (2.16)

05, (0) =6, (1) =0, [|6"||r2(2) =1.

However, this is impossible since (2.11) has a positive solution g. This contradiction
implies that § # 0. Since (2.11) has a unique positive solution, we have 6=9.

Proof of lemma 2.3. By the preceding arguments, we need only show that o* (i) <

0. Since a

[-— Y
9:51 = 05.7}1 a yzgﬂ,yzi
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we have

1 pea(zr)
/ 65Vm - VOF dzy dzy =/0 /0 6°mg, 0, dz; dzo

1 gl
a
=5/ / a(y1)my, 0c {95,1}1 - ‘z_lyﬁs,yz dy, dye.
o Jo
(2.17)

Since |0y, llz2(y — 0 and 8. — § weakly in W'2(£2) and strongly in L*(2), we
have

.1 1 ~ e
31_% - . 6°Vm - VO° dzy dzp = /0 amy, 68y, dy1

1
- / ml,zelﬂl,z dz
0

Lt
-1 / ma (62)., dz
0 0
=%ﬂ/ e 1zz lzz /9191z
o o}

where the last inequality follows from (2.8): Therefore, for any 2 > 0, by choosing
functions a and m suitably, we have a* ) < 0 for sufficiently positive small €. This
completes the proof of lemma 2.3. O

(2.18)

/\AO

LEMMA 2.5. Suppose that m is non-constant and positive somewhere in 2. Then

lim | &(z,p)Vl(z,p) - Vmdz = / m|Vm|? > 0.
p—0 Jn

{m>0}

Proof. By integration by parts we have

/9V0~Vm=-;—/ V(6)? - Vm
7] 2

_L1 [ pbm 1 [
_2/300 - Z/HQAm. (2.19)

It is known that 6(z, 1) — my (z) = max{m(z),0} uniformly as  — 0 [16]. Since
my € WH2(), Vmy = Vm for m(z) > 0, and Vmy = 0 for m(z) < 0, and we
have

om 1
_1 20m 1 2
!lbl_gn 09\70 Vm—z/ (my) 5 2/(m+) Am
=2 [ V(my)? - Im
2J/0
- / m|Vm|? (2.20)
{m>0}
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Proof of theorem 1.8. Part (i) follows from lemmas 2.3 and 2.5. Since a*(a) <0,
by [5, (3.18)] we know that if oy > (11 —v1)/a* (), (4, 0) is unstable and (0, 6(-, v))
is stable for small positive s. Since o* (1) # 0, a1 > (41 — v1)/a* (i) and (1.2) with
~ = [ has a positive solution, by lemma 2.1 we see that system (1.3), (1.4) with
{1, v, @) given by (1.6) has no coexistence states for small positive s. By lemma 2.2
and the theory for monotone systems [12,15], (0, 6(-,v)) is globally asymptotically
stable. O

3. Qualitative properties of i

In this section we study qualitative properties of 4 for either arbitrary a or suf-
ficiently large «. Such properties play essential roles in later studies of stability
of (1,0) and asymptotic behaviours of coexistence states. It is easy to see that
theorem 1.5 follows from lemma 3.2 and theorem 3.5.

3.1. Preliminary bounds of u

We first establish some uniform bounds for @ for arbitrary or large a.
LeEMMA 3.1. The following estimate holds:
Il L2y < llmllzzeo)- 3.1)
Proof. Integrating (1.5) in £2, by the Cauchy-Schwarz inequality we have

/ @ = / mii < [l |l 22y,
2 2

from which (3.1) follows. O0

LEMMA 3.2. Suppose that m(z) > 0 in 2. If a > p/ ming m, inequality (1.7) holds
for every z € {2.
Proof. Set w =i -e~(@/®)™ Then w satisfies
pAw + aVm - Vw 4+ wlm — e*/Bmy) =0 in 02,
Sw } (3.2)

—5-;:0 on 842.

Assume that ming w = w(z,) for some z, € 2. By [18, proposition 3.2] we have

wlza) > miza)esp { - (2 )mizc) .

Set h(y) = yexp{—(a/p)y}. It is easy to check that h' < 0 for y € (u/a,+00).
Since m(zq) € [ming m, maxgs m], we have

w(Ty) = maxm - exp{ — (E> mg,xm},
fs) w) 0

By the choice of z,, we have

o
> . P B ,
w(z) maxm - exp { <I~L> mgxm}
from which (1.7) follows. |
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LemMA 3.3. Suppose that 8m/On < 0 on 802. Then
@)l Loy < Imll ooy + ll AM| Lo () (3.3)
Proof. Rewrite (1.5) as
pAG —aVi-Vm+ f(z,4) =0
in £2, where f(z,u) = 4[m — aAm — 4]. Suppose that Z satisfies 4(Z) = maxg .
Since
o _
an

by [18, proposition 3.2], we have f(Z,%(Z)) = 0, from which (3.3) follows immedi-
ately. O

aﬂ(ém> <0 on 842,
on

LeMMA 3.4. Suppose that Om/On < 0 on 892. There then erxists some constant C,
independent of «, such that

/ | Vm|? ¢ (3.4)
Il [87
Proof. Multiplying (1.5) by m and integrating in (2, we have

—/ Vm-[uVﬂ——aﬁVm]—i—/ mi(m — ) = 0.
o e

Since 5
/Vﬁ-Vm=—/ﬂAm+/ a—”lg-/mm,
n n an On n
we have )
/ avmp < L / fi(—pAm —m?) + ma?)]. (3.5)
o] X Jo
The formula (3.4) follows from lemma 3.1 and (3.5). O

3.2. L? convergence of 4

In this subsection we establish theorem 1.5(i).

THEOREM 3.5. If assumptions 1.1 and 1.4 hold, then

/ﬁz—)O as ¢ — 00,
n

=o},
a0n

—-u/ V(p-Vﬁ—!—a/ ﬁVm-Vgor—/(pﬂ('&-—m).
fe) e fe)

Proof. Multiplying (1.5) by ¢ € S, where

S:—:{LPEOZ(Q):%%

and integrating in {2, we have
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By the boundary condition of ¢,

/V(p-Vﬁ=——/ﬁA<p.
fe) fe)

/.L/nﬂA(,o+a/nﬂ(th-Vm)=/n<p&(ﬂ—m). (3.6)

By lemma 3.1, ||ii]|z2(s2) is uniformly bounded. Therefore, passing to a subsequence
if necessary, we may assume that @ — u* weakly in L?(£2), and v* > 0 a.e. in 2.
Dividing (3.6) by a and passing to the limit in (3.6) we have

Hence,

/ w'Vp-Vm =0, 3.1
2

which holds for any ¢ € S. Since S is dense in Wh2(£2), we see that (3.7) holds for
every @ € W12(2). In particular, we can choose ¢ = m in (3.7) so that

/ u*|Vm|? dz = 0.
2

Hence, u*|Vm|? = 0 a.e. in f2. Since the set of critical points of m is of measure
zero, we see that u* = 0 a.e. in £2. Therefore, u — 0 weakly in L?(£2), which implies
that [, uwdz — 0 as o — oo. Hence,

/112=/ m&é“m[]Lm(m/ G0
2 7 ir4

as o —¥ 00, |

3.3. Concentration at the boundary: monotone m(xz)

In this subsection we restrict ourselves to the case when {2 is an interval and
m(z) is monotone. Without loss of generality, we assume that 2 = (0, 1). The goal
is to establish the following.

Proof of theorem 1.7(i). To show that @'(z) > 0in [0, 1], we argue by contradiction.
If not, since %,(0) > 0 and 4;(1) > 0, we have @.(Z) < 0 for some & € (0,1).
Hence, there exists some z* € (0, Z] such that 4, (z) > 0 for every z € (0,z*) and
iz{z*) = 0. Integrating the equation of @ from 0 to z*, we have

- " -

at(z*)mg(z*) = / afm — 4] < / m € maxm - 1. (3.8)
0 0 [0.1] 0

Define

® = minm,.
[0,1]

By our assumption, s > 0. Since @ is strictly increasing in [0,z*], by (3.8) we have

~ ok < ).
arkt(z*) r{l&fai)]cm w(z*)

Since @(z*) > 0, we find that o < max,,j m/k. This shows that @'(z) > 0 in [0, 1]
if & > maxg 33 m/s.
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Since @ is monotone increasing, it suffices to show that, given any ¢ € (0,1),
%(c) — 0 as @ — co. Since 4 is monotone increasing in [c, 1],

f Ca(@)dz > (1— o).

As we have shown that fol i — 0 as @ — oo, we see that i(c) — 0 as a — oo.
To complete the proof, we need the following calculus result: if f and g are two
monotone increasing functions in [0, 1], then

o= [ o[

Since both m and 4 are monotone increasing, we have

1 1 1 1 1
/m~/a</ma=/a2<maxﬂ-/a.
0 0 0 0 {0,1] 0

_ Therefore,

3.4. Concentration of @: general m(x)

In this subsection we consider the uniform and pointwise convergence of ¢ and
assume that m(z) satisfies assumption 1.6. The goal is to prove theorem 1.7(ii).
For any 6 > 0, define

Is = {z € (0,1) : |m/(z)| > 6}.

LEMMA 3.6. Suppose that assumptions 1.1 and 1.6 hold. For any § > 0, there exists
some positive constant C(8), independent of «, such that u(z) < C for every z € I;
and every o = 0.

Proof. We argue by contradiction. Suppose that the conclusion is false. We see
that, by lemma 3.3, @ is uniformly bounded for any fixed range of a. Hence, we
may assume that there exists dg > 0 such that maxr, i — 00 as @ — 00. Let
To € Is, be such that u(:z;a) - maxy, 4. Passing to some sequence if necessary, we
may assume that ¢, — 2* € I5, as & -+ oo. By assumption 1.6, we can write I5,
as Uh 1(ak, by) for some K > 1. Hence, z* € [a;,b;) for some 1 < 4 < K. By
assumption 1.6, z, € [a;, b;] for sufficiently large ¢, i.e. z,, z* belong to the same
interval [a;, b;].
Set z = z, + y/a, and define

(za +y/a)

vl = )

Hence, w, satisfies wo(0) =1, 0 < wa(y) < 1, and

d | dwe p Y 1 AN _
3 l:/.t &y m (ma + a)waJ + 2 Wa [m(:z:a + a) u(ma)wa] =90
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in Jy i= (—a{za — a;), a(b; — 24)). As & —+ oo, passing to a sequence if necessary,
Jo converges to some interval J, where J contains one of the following: (—o0, +00),
[0, +00) or (—o0,0].

CLAM 3.7. Given any compact subset K of R, ||lwallg2(x) is bounded for suffi-
ciently large a.

To establish our assertion, we first observe that both wq and @(z,)/a (lemma 3.3)
are uniformly bounded for large «. Integrating the equation of 4 from z = 0 to
T = T, we have

wit' (zo) — am!(z4)W(Te) + /-’va w(m —a) = 0.
0

Hence, @'(z4)/(ai(zy)) is uniformly bounded for large . Note that here it suf-
fices to assume that i(z,) is uniformly bounded below by some positive constant.
This implies that w/,(0) is uniformly bounded since w/,(0) = @' (z4)/(ci(zs)). Now
integrating the equation of w, from 0 to y, we find that

) = (20 + £ Yualy) = w0 (0) + 1 (za)al0)

1 [y -

+ pell We [m <ma + %) - u(ma)wa] dy=0. (3.9
Therefore, ||wa ¢ (k) is uniformly bounded for large o. By the equation of wq, we
see that ||we|lc2(x) is uniformly bounded. This proves our assertion.

By our assertion and a standard diagonal process, passing to a sequence if neces-
sary, we see that w, — w* in C1(K), where K is any compact subset of J. By the
equation of we, we — w* in C?(K). Hence, w* satisfies w*(0) =1 and 0 < w* < 1.

By lemma 3.4, we have

1
/ @)fm' (@) dz < &
0 [0

Since |m'| 2 &y in (a4, b;) C Is,, we have

b.
b C
/a. a(z)dz < o

i

By the change of variable z = z, + y/a and the definition of w,, we obtain

C

€ .

A%@@ T
In particular,

C

We(y) dy € 5——. 3.10
v/Jan(—-l,l) (W) dy gu(ma) ( )

Passing to the limit in (3.10), by 4(zs) — co we have

/ w*(y) dy < 0.
Jr(=1,1)
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This implies that w* =0 in J N (—1,1), which contradicts w*(0) =1 since 0 €

JN(-1,1). 0
THEOREM 3.8. Suppose that assumptions 1.1 and 1.6 hold. For any 6 > 0, @ — O
uniformly in Is as o — oo. In particular, 4(z) — 0 for every z € [0, 1)\ {z1,..., 2}
as o — oo.

Proof. We argue by contradiction. Passing to a sequence if necessary, we assume
that there exist dg > 0 and 1 > 0 such that @(z®) > n for some z® € I, and
sufficiently large . Choose x4 € Is, such that %(za) = maxy, @ > 7. Set z =z, +
y/a and define w, = 4(z, + y/o). Hence, wa(0) = 7. Pass(fng to a subsequence
if necessary, we may assume that z, — z* € Is, as @ — oo. By assumption 1.6,
we can write I5, as Uf___l(ak,bk) for some K > 1. Hence, z* € [a;, b;] for some
1 € i € K. By assumption 1.6, we may assume that z, € [a;,b;] for sufficiently
large a. By assumption, m/(0) = 0 > m/(1), so there are only three possibilities:
O<a;<b;<l,0=aq;<b;<lor0<a;<b; =1

We first consider the case when 0 < a; < b; < 1. For this case, we can find some
interval (c;,d;) C Is,/2 such that [a;, b;] C (i, di). Then w, satisfies

d | dwgs ; Y 1 Y —
&y [u & m (a:a-f-a)wa] +a2wa[m<ma+a We| =10

in Jy := (—a(zq — ¢;), a(d; — z4)). Since x4 € {a;, b;], we see that J, converges to
(—o0, +00) as @ = 00. By lemma 3.6, w, is uniformly bounded in J,. Analogously
to the proof of lemma 3.6, passing to some sequence if necessary, we may assume
that we — w* in C?(K), where K is any compact subset of (—oo, +00). Hence, w*
satisfies w*(0) = n, 0 < w*(y) € C in (—o0, +00) and :

d*w* () dw*
a2 dy

=0 in (—o0,+00).

Hence, w* = ¢; + cze(m/(m‘)/ K)Y for some constants ¢; and cp. Since w* is bounded
in (—oo,+o00), we see that c; = 0. This together with w*(0) > n implies that
w* = w*(0) in (—o0, +00).
By lemma 3.4, we have
d;
/a@mmwmgg
c; a
Since |m'| > 60/2 in (ci,d;i) C I5,/2, by the change of variable z = z4 + y/o and
the definition of w,, we obtain

4Cc
/ wa(y) dy < 2z
Ja O

For any L > 0, [-L, L] C J, for sufficiently large o.. Hence,

L
4C
IO
~L 0
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Passing to the limit we find that

Lo, 4C
/ w*(y)dy < R
. 0

i.e. 2Ln < 4C/682 since w* > . This is a contradiction, since L > 0 is arbitrary.
Next we consider the case when a; = 0 and b; < 1. For this case, if £* > 0, then
we can use the same proof as above to reach a contradiction. {The main point is
that for this case we also have J, — (—o00,+00) as @ — oo, which again implies
that w* is equal to some positive constant.) It remains to consider the case when
z* = 0. Since |m/(z4)| = dp > 0 and z, — z* = 0, we see that |m’(0)| > do. Since
we assume that m/'(0) > 0, we have m'(0) > 0. By the same argument as before,
we can assume that w, — w* as a — oo, w*(0) 2 7, 0 € w* £ C, and w* satisfies
d2w* dw*

UA—— ! Pened
“dyz m'(0 & 0

in some interval J which contains [0, +o00). Hence, w* = ¢; + ¢z exp{(m/(0)/p)y} in
[0, +00). Since m/(0) > 0, w*(0) > n and w* is bounded, the only possibility is that
w* = w*(0) > 7 in [0,00). Then, as in the case when 0 < a; < b; < 1 (with [-L, L]
being replaced by [0, L]) and as in the previous case, we can apply lemma 3.4 to
reach a contradiction.

The case when a; > 0 and b; = 1 can be treated similarly. This completes the
proof. |

4. Instability of semi-trivial states for o > 1

In this section we study the stability of the two semi-trivial states (&,0) and
(0,8(-,v)) and establish theorem 1.9.

4.1. Instability of (i, 0)
THEOREM 4.1. Suppose that assumptions 1.1 and 1.4 hold. Then, for fized p > 0,

there exists some positive constant oy = ay(u, 2) such that if & 2 a1, (4,0) is
unstable for every v > 0.

Proof. Tt suffices to show that the least eigenvalue oy for the problem

o9

vAY + (m —d)p = —op in f2, Bn o

=0

is negative for o > 1. Let 41 > 0 in {2 be an eigenfunction associated with 0. By
the maximum principle, ¥; > 0 in £2. Dividing the preceding equation by 4 and
integrating in {2, we obtain

0] = —v 'V‘“‘ + [a-m< [ @—m.

n

By theorem 3.5, fnﬁ — 0 as o — oo. Since fgm > 0, we find that o7 < 0 for
a > 1 and every v > 0. O
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4.2. Instability of (0, 6(-,v))

For simplicity, in this and next subsections we denote 4(-,v) by 9. The goal is
to study the stability of (0,9) for various ranges of values of o. We first establish
some a priori estimates of 7.

LEMMA 4.2. For every v > 0, we have maxp U < maxgp m.

Proof. By the maximum principle, [|7|Le(0) < maxpm. Set vi = maxpm — 9.
Hence, v; > 0 in f2. Since 7 is a non-constant function (as m is not constant),
v; # 0. By (1.2), we see that v; satisfies

—vAv + 1y (ﬁ+m§xm ——m) = m_axm(mgxm —m) >0
fr] Ie) ]

in 2 and J0v,/0n = 0 on 942. Since v; > 0 and v, # 0, by the maximum principle
we have vy > 0 in 2. This completes the proof. O

LEMMA 4.3. For anyn > 0, there exists § = &(n, {2) > 0 such that, for everyv = 1,

max ¥ < maxm — 4.
o) fo)
Proof. We argue by contradiction. Suppose that the conclusion is false. We may
assume by lemma 4.2 that there exists np > 0, with »; > no and v; = (-, v;), satis-
fying maxgp v; — maxg m as § — co. By standard elliptic regularity, there exists v €
(0,1) such that ||v;]|g2.+ (g is uniformly bounded. Passing to a sequence if necessary,
we may -assume that either v; — & for some # > 0 or v; —+ o0, and v; = v™ in CZ(Q).
In particular, v* > 0 and satisfies maxg v* = maxg m. If v; —= D, then v* = 4(-, D).
This implies that maxp 9(-, #) = maxg m, which contradicts lemma 4.2. If »; — oo,
we see that v* = [, m/|f2|. Hence, maxz m = [, m/|f2|, which implies that m is a
constant. This contradiction completes the proof. [

THEOREM 4.4. Suppose that assumptions 1.1 and 1.8 hold. For every p > 0 and
n > 0, there exists some positive constant ay = ag(p,n, 2) such that if @ > oz,
then (0,7) is unstable for every v 2 7.
Proof. Tt suffices to show that the eigenvalue problem

V - [uVe — apVm] + (m—0)p = —cp in {2, } 1)

[uVy - apVm] - n=20 on 62

has an eigenvalue with negative real part. Set ¥ = exp{—(a/p)m}e. Then 9 satis-
fies

uV - (&MY 4 (m — 5)eld/Hmey = —gele/rmy, in £,

(4.2)
a—w = on 612.
on

To show that the least eigenvalue of (4.2) is negative, it suffices to find ¥ such that

R N
n 2
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By lemma 4.3, there exists an zo € {2 such that m(zg) = maxg m and m(zo) —
9{zq) 2 § for every v > 7. Standard elliptic regularity and the Sobolev embedding
theorem imply that there exists some positive constant Cy = Cy(7, £2) such that
if v 2 n, then |V3||r~ < C;. Here and below, the C; always denote some positive
constants depending only on 7 and (2. Hence, there exists B3 = Ry{(n,2) small
such that m — © > 16 in Bg, (o) N 2 for every v > 7. For brevity, we shall write
Bg(zg) as B for any R > 0.

For Ry, Rg > 0, define

] = max m
(Bry\BRr, /2)Nf2

: (4.4)
My = min m.
BRZU.Q
By assumption 1.8, we can choose Ry < R;/2 sufficiently small so that
Mz > §[M; +m(zo)] > My, (4.5)
Choose ¥ € C({2) such that
1 in BR1/2 N,
¥ =4q€[0,1] in (Bg, \ Bg,/2) N1, (4.6)
0 otherwise.
In particular, |V¥|p» < C3. Then
u / oo/ Im T2 = / o/ 1ym 72
0] (Bry \BR, /2)N02
<G / o(a/uym
(Bry\Bpr,/2)n02
< O5e(a/u)M1 (4.7)
and
/ (m — )ele/Mmp? — / (m — B)ele/Wmy?
n Bg,Ne2
> / (m — B)el@/mm
anﬂn
> ele/u) My / (m — D)
Bﬂzﬂﬂ
> Cgelo/mMz, (4.8)

By (4.5), (4.7) and (4.8) and choosing « sufficiently large, we see that (4.3) holds.
This completes the proof. [

Proof of theorem 1.9. Parts (i) and (il) are given by theorems 4.1 and 4.4. Since
(1.3), (1.4) is a strongly monotone system (lemma 2.2), part (iii) follows from (i),
(ii) and theory for monotone systems (see, for example, {13, corollary 7.6 and the-
orem 10.2]). To prove part (iv), let (uq, Vo) be a coexistence state of (1.3), (1.4).
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Then u, satisfies
V- [uVug — auaVm] + (m — ug)ue >0 in 02,

4.9
Gy 0o o (4.9)
mn mn

i.e. uq is a subsolution of £1‘5). By the standard supersolution and subsolution
method we have u, < @ in 2. This, together with parts (i) and (ii) of theorem 1.5,

implies that ||uallz2(n) —+ 0 and ug — 0 pointwise in [0,1]\{z1,...,zx} as @ — oo.
By standard elliptic regularity [10] and ||ua|z2(0) — 0, we find that v, — 0(-,v)
in W22(0) as a — o0. O
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